当前位置:龙翔文秘网 > 专题范文 > 公文范文 >

2023年定积分证明题方法总结五篇(范例推荐)

| 浏览次数:

定积分证明题方法总结1  摘要:结合实例分析介绍了不定积分的四种基本计算方法。为使学生熟练掌握,灵活运用积分方法,本文将高等数学中计算不定积分的常用方法,简单进行了整理归类。  关键词:积分方法第一下面是小编为大家整理的2023年定积分证明题方法总结五篇(范例推荐),供大家参考。

2023年定积分证明题方法总结五篇(范例推荐)

定积分证明题方法总结1

  摘要:结合实例分析介绍了不定积分的四种基本计算方法。为使学生熟练掌握,灵活运用积分方法,本文将高等数学中计算不定积分的常用方法,简单进行了整理归类。

  关键词:积分方法 第一类换元法第二类换元法 分部积分法 不定积分是高等数学中积分学的基础,对不定积分的理解与掌握的好坏直接影响到该课程的学习和掌握。熟练掌握不定积分的理论与运算方法,不但能使学生进一步巩固前面所学的导数与微分的知识,而且也将为学习定积分,微分方程等相关知识打好基础。在高等数学中,函数的概念与定义与初等数学相比发生了很多的变化,从有限到无限,从确定到不确定,计算结果也可能不唯一,但计算方法与计算技巧显得更加重要。这些都在不定积分的计算中体会的淋漓尽致。对不定积分的求解方法进行简单的归类,不但使其计算方法条理清楚,而且有助于对不定积分概念的理解,提高学习兴趣,对学好积分具有一定的促进作用。

  1 直接积分法

  直接积分法就是利用不定积分的定义,公式与积分基本性质求不定积分的方法。直接积分法重要的是把被积函数通过代数或三角恒等式变形,变为积分表中能直接计算的公式,利用积分运算法则,在逐项积分。

  一、原函数与不定积分的概念

  定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dF

  f(x)

  (x)f(x)dx

  ,则称F(x)为f(x)的一个原函数

  定义2.函数

  f(x)的全体原函数F(x)C叫做f(x)的不定积分,,记为:

  f(x)dxF(x)C

  f(x)叫做被积函数 f(x)dx叫做被积表达式C叫做积分常数

  “

  其中

  ”叫做积分号

  二、不定积分的性质和基本积分公式

  性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即

  f(x)dxf(x);df(x)dxf(x)dx.

  性质2. 函数的"导数或微分的不定积分等于该函数加上一个任意函数,即

  f(x)dxf(x)C,

  或df(x)f(x)C

  性质3. 非零的常数因子可以由积分号内提出来,即

  kf(x)dxkf(x)dx

  (k0).

  性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即

  f(x)g(x)dxf(x)dxg(x)dx

  基本积分公式

  (1)kdxkxC(k为常数)

  (2)xdx

  1

  1

  x

  1

  C

  (1)

  1

  (3)xlnxC

  x

  (4)exdxexC

  (6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16)

  11x

  11x

  2

  (5)a

  x

  dx

  a

  x

  lna

  C

  (7)sinxdxcosxC (9)csc2xdxcotxC

  (11)

  cscxcotxdxcscxC

  (13)cscxdxlncscxcotxC (15)

  1x

  2

  2

  xarctanxC

  xarcsinxC

  xarcsinxC

  三、换元积分法和分部积分法

  定理1. 设(x)可导,并且f(u)duF(u)C. 则有

  f[(x)](x)dxF(u)C

  凑微分

  f[(x)]d(x)

  令u(x)

  f(u)du

  代回u(x)

  F((x))C

  该方法叫第一换元积分法(integration by substitution),也称凑微分法. 定理2.设x数F

  (t)是可微函数且(t)0,若f((t))(t)具有原函

  (t),则

  xt换元

  fxdx

  fttdt

  积分

  FtC

  t

  1

  x

  回代

  1

  FxC.

  该方法叫第二换元积分法

定积分证明题方法总结2

  1、原函数存在定理

  ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

  ●分部积分法

  如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

  2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

  定积分

  1、定积分解决的典型问题

  (1)曲边梯形的面积(2)变速直线运动的路程

  2、函数可积的充分条件

  ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

  ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

  3、定积分的若干重要性质

  ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

  ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

  ●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

  ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

  ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。

  4、关于广义积分

  设函数f(x)在区间[a,b]上除点c(a

  定积分的应用

  1、求*面图形的面积(曲线围成的面积)

  ●直角坐标系下(含参数与不含参数)

  ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)

  ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)

  ●*行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)

  ●功、水压力、引力

  ●函数的*均值(*均值y=1/(b-a)*∫abf(x)dx)

定积分证明题方法总结3

  一、不定积分计算方法

  1.凑微分法

  2.裂项法

  3.变量代换法

  1)三角代换

  2)根幂代换

  3)倒代换

  4.配方后积分

  5.有理化

  6.和差化积法

  7.分部积分法(反、对、幂、指、三)

  8.降幂法

  二、定积分的计算方法

  1.利用函数奇偶性

  2.利用函数周期性

  3. 参考不定积分计算方法

  三、定积分与极限

  1.积和式极限

  2.利用积分中值定理或微分中值定理求极限

  3.洛必达法则

  4.等价无穷小

  四、定积分的估值及其不等式的应用

  1.不计算积分,比较积分值的大小

  1)比较定理:若在同一区间[a,b]上,总有

  f(x)>=g(x),则>= ()dx

  2)利用被积函数所满足的不等式比较之a)

  b)当0

  2.估计具体函数定积分的.值

  积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则

  M(b-a)<= <=M(b-a)

  3.具体函数的定积分不等式证法

  1)积分估值定理

  2)放缩法

  3)柯西积分不等式

  ≤ %

  4.抽象函数的定积分不等式的证法

  1)拉格朗日中值定理和导数的有界性

  2)积分中值定理

  3)常数变易法

  4)利用泰勒公式展开法

  五、变限积分的导数方法

  1、经验总结

  (1)定积分的定义:分割—近似代替—求和—取极限

  (2)定积分几何意义:

  ①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积ab

  ②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a

  反数

  (3)定积分的基本性质:

  ①kf(x)dx=kf(x)dx aabb

  ②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa

  ③f(x)dx=f(x)dx+f(x)dx aac

  (4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb

  ①定义法:分割—近似代替—求和—取极限②利用定积分几何意义

  ’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba

定积分证明题方法总结4

  1、原函数存在定理

  ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

  ●分部积分法

  如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

  2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

  定积分

  1、定积分解决的典型问题

  (1)曲边梯形的面积(2)变速直线运动的路程

  2、函数可积的充分条件

  ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

  ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

  3、定积分的若干重要性质

  ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

  ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

  ●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

  ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

  ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。

  4、关于广义积分

  设函数f(x)在区间[a,b]上除点c(a

  定积分的应用

  1、求*面图形的面积(曲线围成的面积)

  ●直角坐标系下(含参数与不含参数)

  ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)

  ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的"方程)

  ●*行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)

  ●功、水压力、引力

  ●函数的*均值(*均值y=1/(b-a)*∫abf(x)dx)

定积分证明题方法总结5

  一、原函数

  定义1 如果对任一xI,都有F(x)f(x) 或 dF(x)f(x)dx

  则称F(x)为f(x)在区间I 上的原函数。

  例如:(sinx)cosx,即sinx是cosx的原函数。 [ln(xx2)

  原函数存在定理:如果函数f(x)在区间I 上连续,则f(x)在区间I 上一定有原函数,即存在区间I 上的可导函数F(x),使得对任一xI,有F(x)f(x)。

  注1:如果f(x)有一个原函数,则f(x)就有无穷多个原函数。

  设F(x)是f(x)的原函数,则[F(x)C]f(x),即F(x)C也为f(x)的原函数,其中C为任意常数。

  注2:如果F(x)与G(x)都为f(x)在区间I 上的原函数,则F(x)与G(x)之差为常数,即F(x)G(x)C(C为常数)

  注3:如果F(x)为f(x)在区间I 上的一个原函数,则F(x)C(C为任意常数)可表达f(x)的任意一个原函数。

  1x2,即ln(xx2)是1x2的原函数。

  二、不定积分

  定义2 在区间I上,f(x)的带有任意常数项的原函数,成为f(x)在区间I上的不定积分,记为f(x)dx。

  如果F(x)为f(x)的一个原函数,则

  f(x)dxF(x)C,(C为任意常数)

  三、不定积分的几何意义

  图 5—1 设F(x)是f(x)的一个原函数,则yF(x)在*面上表示一条曲线,称它为f(x)f(x)的不定积分表示一族积分曲线,它们是由f(x)的某一条积分曲线沿着y轴方向作任意*行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x的点处有互相*行的切线,其斜率都等于f(x).

  在求原函数的具体问题中,往往先求出原函数的一般表达式yF(x)C,再从中确定一个满足条件 y(x0)y0 (称为初始条件)的原函数yy(x).从几何上讲,就是从积分曲线族中找出一条通过点(x0,y0)的积分曲线.

  四、不定积分的性质(线性性质)

  [f(x)g(x)]dxf(x)dxg(x)dx

  k为非零常数) kf(x)dxkf(x)dx(

  五、基本积分表

  ∫ a dx = ax + C,a和C都是常数

  ∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1/x dx = ln|x| + C

  ∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

  ∫ e^x dx = e^x + C

  ∫ cosx dx = sinx + C

  ∫ sinx dx = - cosx + C

  ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

  ∫ tanx dx = - ln|cosx| + C = ln|secx| + C

  ∫ secx dx =ln|cot(x/2)| + C

  = (1/2)ln|(1 + sinx)/(1 - sinx)| + C

  = - ln|secx - tanx| + C = ln|secx + tanx| + C

  ∫ cscx dx = ln|tan(x/2)| + C

  = (1/2)ln|(1 - cosx)/(1 + cosx)| + C

  = - ln|cscx + cotx| + C = ln|cscx - cotx| + C

  ∫ sec^2(x) dx = tanx + C

  ∫ csc^2(x) dx = - cotx + C

  ∫ secxtanx dx = secx + C

  ∫ cscxcotx dx = - cscx + C

  ∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C

  ∫ dx/√(a^2 - x^2) = arcsin(x/a) + C

  ∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C

  ∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C

  ∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

  六、第一换元法(凑微分)

  设F(u)为f(u)的原函数,即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,则 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx

  即F[(x)]为f[(x)](x)的原函数,或

  f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有

  定理1 设F(u)为f(u)的原函数,u(x)可微,则

  f[(x)](x)dx[f(u)du]

  公式(2-1)称为第一类换元积分公式。 u(x)u(x) (2-1)

  f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x)

  1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb


定积分证明题方法总结5篇扩展阅读


定积分证明题方法总结5篇(扩展1)

——初一*行线证明题的方法3篇

初一*行线证明题的方法1

  A*面垂直与一条直线,

  设*面和直线的交点为P

  B*面垂直与一条直线,

  设*面和直线的交点为Q

  假设A和B不*行,那么一定有交点。

  设有交点R,那么

  做三角形 PQR

  PR垂直PQ QR垂直PQ

  没有这样的三角形。因为三角形的内角和为180

  所以 A一定*行于B

  证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不*行 则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线*行于a 这就与*行公理矛盾 所以假使不成立 所以b‖c 由同位角相等,两直线*行,可推出: 内错角相等,两直线*行。 同旁内角互补,两直线*行。 因为 a‖b,a‖c, 所以 b‖c (*行公理的推论)

初一*行线证明题的方法2

  “两直线*行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线*行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

  一、怎样证明两直线*行 证明两直线*行的常用定理(性质)有: 1.两直线*行的判定定理:①同位角相等,两直线*行;②内错角相等,两直线*行;③同旁内角互补,两直线*行;④*行(或垂直)于同一直线的两直线*行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边. 4、*行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用*行线判定定理可判断答案选 C \认六一值!小人﹃夕叱的 一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线*行. 例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(2003年泉州市)如图2,△注Bc中,匕BAC的*分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc

  (1)根据定义。证明两个*面没有公共点。

  由于两个*面*行的定义是否定形式,所以直接判定两个*面*行较困难,因此通常用反证法证明。

  (2)根据判定定理。证明一个*面内有两条相交直线都与另一个*面*行。

  (3)根据“垂直于同一条直线的两个*面*行”,证明两个*面都与同一条直线垂直。

  2. 两个*行*面的判定定理与性质定理不仅都与直线和*面的*行有逻辑关系,而且也和直线与直线的.*行有密切联系。就是说,一方面,*面与*面的*行要用线面、线线的*行来判定;另一方面,*面

  与*面*行的性质定理又可看作*行线的判定定理。这样,在一定条件下,线线*行、线面*行、面面*行就可以互相转化。

  3. 两个*行*面有无数条公垂线,它们都是互相*行的直线。夹在两个*行*面之间的公垂线段相等。

  因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个*行*面间的距离。显然这个距离也等于其中一个*面上任意一点到另一个*面的垂线段的长度。

  两条异面直线的距离、*行于*面的直线和*面的距离、两个*行*面间的距离,都归结为两点之间的距离。

  1. 两个*面的位置关系,同*面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个*面的位置关系有:

  (1) *行—没有公共点;

  (2) 相交—有无数个公共点,且这些公共点的集合是一条直线。

  注意:在作图中,要表示两个*面*行时,应把表示这两个*面的*行四边形画成对应边*行。

  2. 两个*面*行的判定定理表述为:

  4. 两个*面*行具有如下性质:

  (1) 两个*行*面中,一个*面内的直线必*行于另一个*面。

  简述为:“若面面*行,则线面*行”。

  (2) 如果两个*行*面同时和第三个*面相交,那么它们的交线*行。

  简述为:“若面面*行,则线线*行”。

  (3) 如果两个*行*面中一个垂直于一条直线,那么另一个也与这条直线垂直。

  (4) 夹在两个*行*面间的*行线段相等


定积分证明题方法总结5篇(扩展2)

——考研数学复习解决证明题的方法 (菁选2篇)

考研数学复习解决证明题的方法1

  第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

  因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的`。再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

  第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为“逆推”。

  如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

考研数学复习解决证明题的方法2

  一、复习进度表

  每天至少应该花2.5-3.5个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1-1.5小时左右来做习题巩固。对于数学基础较薄弱的考生建议每天再加一个小时的复习时间用来做习题并总结。

  具体每章复习所用的时间我们在每章题目旁边给出了一个复习时间限定期限,如果超出这个时间,或者少于这个时间最好要和你的主管顾问讲明原因,由主管顾问根据你学习的情况来调整复习的时间与内容。

  二、复习计划使用说明

  1.学习计划里有日期、学习时间,日期是对本章知识内容的限定时间,学习时间是针对复习知识点在大纲中的要求而建议应该使用的学习时间,考生们在学习的时候一定要两者同时兼顾,*时如果学习时间不够,可利用周末的时间做调整。

  2.计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。

  3.每章复习结束后都必须做单元测试题,单元测试题是准确把握学员是否按照大纲要求掌握了本章内容。学员在做复习完每章内容后,跟主管顾问要本章测试题。测试题做完后一定要把成绩反馈给你的主管顾问,以便老师根据你的复习情况及时调整你的学习方法与内容。

  4.考生们在复习的时候一定要和你周围的考生、老师多交流学习心得。只有你总结出来的方法才是最适合你的方法。

  5.考生们在复习的过程中肯定要遇到一些疑难问题、做错的题目,一定要在第一时间把他整理到你的笔记本里,方便的时候可以答疑。


定积分证明题方法总结5篇(扩展3)

——求定积分的方法的总结

求定积分的方法的总结1

  1. 知识网络

  2.方法总结

  (1) 定积分的定义:分割—近似代替—求和—取极限

  (2)定积分几何意义:

  ①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab

  ②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a

  反数

  (3)定积分的基本性质:

  ①kf(x)dx=kf(x)dx aabb

  ②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa

  ③f(x)dx=f(x)dx+f(x)dx aac

  (4)求定积分的方法: baf(x)dx=limf(i)xi ni=1nbbbbbcb

  ①定义法:分割—近似代替—求和—取极限 ②利用定积分几何意义

  ③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba


定积分证明题方法总结5篇(扩展4)

——勾股定理证明题试题及参考答案3篇

勾股定理证明题试题及参考答案1

  已知△ABC中,∠ACB=90°,以△ABC的各边为长边在△ABC外作矩形,使每个矩形的宽为长的一半,S1、S2、S3分别表示这三个矩形的面积,则S1、S2、S3之间有什么关系?并证明你的结论。(要详细解题过程)

  因为D是AB的中点,DE垂直于DF于D

  所以,∠EDF=90度,AC=2DF, BC=2DE

  又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC

  即,∠DFB=∠AED=90度

  根据勾股定理 则有 AE^2=AD^2-DE^2-------(1)

  BF^2=BD^2-DF^2-------(2)

  又因为D是AB的中点,DE//BC,DF//AC。

  所以EF//AB,且AD=BD=EF----------------(3)

  在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2)

  即 EF^2=AE^2+BF^2

  因为D是AB的中点,DE垂直于DF于D

  所以,∠EDF=90度,AC=2DF, BC=2DE

  又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC

  即,∠DFB=∠AED=90度

  根据勾股定理 则有 AE^2=AD^2-DE^2-------(1)

  BF^2=BD^2-DF^2-------(2)

  又因为D是AB的中点,DE//BC,DF//AC。

  所以EF//AB,且AD=BD=EF----------------(3)

  在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2)

  即 EF^2=AE^2+BF^2

勾股定理证明题试题及参考答案2

  设MD,ME,MF分别交AC,BC,AB于P,Q,R,连接MA.MB,MC

  由勾股定理

  MB^2=MP^2+BP^2=MR^2+BR^2 (1)

  BD^2=MP^2+PD^2=BF^2=BR^2+FR^2 (2)

  CM^2=CP^2++MP^2=CQ^2+MQ^2 (3)

  CD^2=PD^2+PC^2=CF^2=CQ^2+QF^2 (4)

  MA^2=MQ^2+AQ^2=AR^2+MR^2 (5)

  由(1)(2)(3)(4)(5)可得

  AQ^2+MQ^2=AR^2+FR^2

  即AE^2=AF^2

  AE=AF


定积分证明题方法总结5篇(扩展5)

——相交线*行线证明题 (菁选2篇)

相交线*行线证明题1

  如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。

  由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。

  不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,

  第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的曲线,我们连接AE,肯定的`知道AE是比线段AE长,(两点之间线段最断嘛)。

  因为三角形ABE当中AE是斜边,所以很容易得到 :

  曲线AE >线段AE > AB=2

  第二:E在AB或者AD上的情况,同样只考虑在AB上,

  也不管AE是什么东东,哈哈。

  在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

  曲线AE= 曲线AF +曲线EF > 线段AF +线段EF

  三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

  所以

  曲线AE >AB = 2

  其实,有需要的时候,我们可以把AE的最小值算出来的,

相交线*行线证明题2

  证明:因为∠1与∠3互补

  所以DE//BC

  所以∠1=∠4(两直线*行,同位角相等)

  所以∠2=∠4(对顶角相等)

  所以∠1=∠2(等量代换)

  (电脑打不出"因为","所以:,在写证明过程中,将因为和所以改成三个点的样子)

  第二:E在AB或者AD上的情况,同样只考虑在AB上,

  也不管AE是什么东东,哈哈。

  在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,

  曲线AE= 曲线AF +曲线EF > 线段AF +线段EF

  三角形AEF中,AF+ EF>AB,不用说了吧。三角形两边和大于第三边。

  所以

  曲线AE >AB = 2

  其实,有需要的时候,我们可以把AE的最小值算出来的,


定积分证明题方法总结5篇(扩展6)

——考研数学的证明题应该如何做 (菁选2篇)

考研数学的证明题应该如何做1

  1.结合几何意义

  记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。

  这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。

  这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的`值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

考研数学的证明题应该如何做2

  第一用夹逼准则计算极限

  第二导数应用

  第三一元函数积分的计算法

  第四不等式证明和方程根的问题

  第五一元积分应用

  第六多元函数的级值与最值问题

  第七二重积分计算法

  第八,微分方程的解法

  第九级数求和(数一数三考,数二不考),第十三大共识,包括格林公式,高斯公式,斯托克斯公式,这是仅数一考

  第十一个等价向量组

  第十二个二次型化标准型

  第十三是相似理论

  第十四是数学二不要求了,叫做求分布,包括一位随机变量函数的分布和二位随机变量函数的分布

  第十五个做估计

  第十六个是求数字特征


定积分证明题方法总结5篇(扩展7)

——考研数学证明题类别及证法盘点 (菁选2篇)

考研数学证明题类别及证法盘点1

  ☆题目篇☆

  考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:

  ▶数列极限的证明

  数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

  ▶微分中值定理的相关证明

  微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

  1.零点定理和介质定理;

  2.微分中值定理;

  包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

  3.微分中值定理

  积分中值定理的作用是为了去掉积分符号。

  在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

  ▶方程根的问题

  包括方程根唯一和方程根的个数的讨论。

  ▶不等式的证明

  ▶定积分等式和不等式的证明

  主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

  ▶积分与路径无关的五个等价条件

  这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

  ☆方法篇☆

  以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。那么,遇到这类的证明题,我们应该用什么方法解题呢?

  ▶结合几何意义记住基本原理

  重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

  因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  ▶借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

  再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  ▶逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的"一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

  对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。

考研数学证明题类别及证法盘点2

  第一:求极限

  无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛必达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数有的点的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!

  第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式

  证明题不能说每年一定考,但基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。

  第三:一元函数求导数,多元函数求偏导数

  求导问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变现积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。

  另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。

  第四:级数问题

  常数项级数(特别是正项级数、交错级数)的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。

  第五:积分的计算

  积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对考生来说数学主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。

  第六:微分方程问题

  解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即*常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。


定积分证明题方法总结5篇(扩展8)

——高中四边形证明题方法 (菁选2篇)

高中四边形证明题方法1

  已知E . F分别为*行四边形ABCD一组对边AD BC的中点 , BE与AF交于点G ,CE与DF交于点H 求证 四边形EGFH是*行四边形

  解:在三角形ABF和三角形EDC中

  因为:AB=CD

  角DAB=角DCB

  AE=FC

  所以:三角形ABF全等于三角形EDC

  所以:EB=FD

  所以:四边形BEDF为*行四边形

  同理可证:四边形AEFC为*行四边形

  在三角形EHD和三角形CHF中

  因为:角EHD=角CHF

  角DEH=角HCF

  ED=FC

  所以:角形EHD全等于三角形CHF

  在三角形BGF和三角形FHC中

  因为:角EBF=角DFC

  BF=FC

  角AFB=角ECF

  所以:三角形BGF全等于三角形FHC

  所以:三角形BGF全等于三角形EHD

  所以:GF=EH

  同理可证:GE=FH

  所以:四边形EGFH是*行四边形

高中四边形证明题方法2

  如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。

  求证:四边形ADFE是*行四边形。

  设BC=a,则依题意可得:AB=2a,AC=√3a,

  等边△ABE ,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a

  ∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴ DF=√(AD²+AF²)=2a

  ∴AE=DF=2a,EF=AD=√3a =>四边形ADFE是*行四边形

  1两组对边分别*行的四边形是*行四边形(定义)2两组对边分别相等的四边形是*行四边形3一组对边*行且相等的四边形是*行四边形4对角线互相*分的四边形是*行四边形5两组对角分别相等的四边形是*行四边形

  两组对边分别*行的四边形是*行四边形2、一组对边*行且相等的四边形是*行四边形3、两组对边分别相等的四边形是*行四边形4、对角线互相*分的四边形是*行四边形


定积分证明题方法总结5篇(扩展9)

——考研数学冲刺定积分有哪些复习要点

考研数学冲刺定积分有哪些复习要点1

  一、注重理解基本概念、基本性质

  从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。

  二、认真分析考试大纲,抓住考试重点

  考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考2016年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以*时复习要加强这类题型的"训练。另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。

  三、重视练习考研真题

  真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水*,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时强化知识和方法。最后,把近十五年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。

  四、模拟练习必不可少

  最后冲刺阶段,需要回归教材,把课本再认真梳理一遍,查遗补漏,将知识明确化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不要做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到“实战”的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩


推荐访问:证明 积分 方法 定积分证明题方法总结五篇 定积分证明题方法总结1 定积分的证明题总结

热门排行

2023年党章全文9篇(完整文档)

党章全文1978年12月,十一届三中全会重新确立了马克思主义的思想路线,及时果断地把党和国家的工作重心转移到社会主义现代化建设上来,再次实现了党的历史性转折

大学生二十大的学习心得9篇(范文推荐)

大学生二十大的学习心得中国共产党第二十次全国代表大会,是在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的

2022年最新社保补缴规定(全文)

社会是一种缴费性的社会保障,资金主要是用人单位和劳动者本人缴纳,政府财政给予补贴并承担最终的责任。下面是小编为大家整理的2022最新社保补缴规定,仅供参考...

2022年教育部初中生必读书目30本(全文)

通过读书,我们可以更好的掌握外界的知识,去提高自己的谈吐以及能力。下面是小编给大家带来的部推荐初中生30本,希望能够帮到你哟!初中生必读书目30本1、《西游...

2023年度学习党的二十大精神思想汇报3篇

学习党的二十大精神思想汇报拥抱新时代,带领人民不断创造美好生活;标定新方位,领航中华民族继续开创复兴伟业。党的二十大吹响了新时代推进中国特色社会主义

民主评议党员登记表自我评价意见12篇【完整版】

民主评议党员登记表自我评价意见本人以一个共产党员的准则严格要求自己,做到思想上先进,行动上先进,获得上级领导的好评和肯定。一、思想上思想上,认真学习党...

2022“牢记领袖训词,永做忠诚卫士”主题教育题研讨发言材料(共三篇)

0“牢记领袖训词,永做忠诚卫士”主题教育题研讨发言材料(共三篇)第一篇根据“牢记领袖训词,永做忠诚卫士”主题教育第一专题研讨交流安排,下面我简单汇报个...

2022年度理论学习中心组学习计划(全文完整)

0年度理论学习中心组学习计划0年是党的二十大召开之年,也是实施“十四五〞规划、开启全面建设社会主义现代化国家新征程的关键一年。深入学习落实新时代中国特色...

2023年党员个人问题清单及整改措施15篇

党员个人问题清单及整改措施问题一、思想认识不到位,敷衍应付走过场。对民主评议党员工作的重要性、严肃性存在认识偏差,认为民主评议党员无非就是“画个圈,打...

能力作风建设实施方案(全文)

能力作风建设实施方案为进一步提升旅游局机关能力作风建设,全面落实《关于开展能力作风建设提升年活动的实施意见》,以发挥旅游在现代服务业中的龙头作用,经局...